randRangeNonZero(-10, 10) randRangeNonZero(-10, 10) randRangeNonZero(-10, 10) B * B - 4 * A * C
splitRadical(RADICAND) new Polynomial(0, 2, [C, B, A], "x") F.text() (function() { var wrongs = []; var good_gcd = getGCD(A, B, C); for (var i = 0; i < 5; i++) { var bad_a = randRangeNonZero(-10, 10); var bad_b = randRangeNonZero(-10, 10); var bad_c = randRangeNonZero(-10, 10); var bad_gcd = getGCD( bad_a, bad_b, bad_c ); while (( abs(A*bad_gcd) === abs(bad_a*good_gcd) && abs(B*bad_gcd) === abs(bad_b*good_gcd) && abs(C*bad_gcd) === abs(bad_c*good_gcd) ) || (( (bad_b * bad_b) - (4 * bad_a * bad_c) ) < 0)) { bad_a = randRangeNonZero(-10, 10); bad_b = randRangeNonZero(-10, 10); bad_c = randRangeNonZero(-10, 10); bad_gcd = getGCD( bad_a, bad_b, bad_c ); } wrongs.push(quadraticRoots(bad_a, bad_b, bad_c)); } return wrongs; })()

EQUATION = 0

Care sunt soluțiile pentru x?

quadraticRoots(A, B, C)

  • WRONGS[0]
  • WRONGS[1]
  • WRONGS[2]
  • WRONGS[3]
  • WRONGS[4]
shuffle([coefficient(A) + "x^2", coefficient(B) + "x", C]).join("+") coefficient(A) + "x^2+"+ coefficient(B) + "x+" + C

În primul rând trebuie să aducem ecuația la forma ax^2 + bx + c = 0:

\qquadF.text() = 0

shuffle([0, 1, 2]) [coefficient(A) + "x^2", coefficient(B) + "x", C] [coefficient(-A) + "x^2", coefficient(-B) + "x", -C] TERMS.join("+")

TERMS[N1] + TERMS[N2] = NEGTERMS[N3]

Care sunt soluțiile pentru x?

În primul rând trebuie să aducem ecuația la forma ax^2 + bx + c = 0:

\qquadTERMS[N1] + TERMS[N2] + TERMS[N3] = 0

\qquadF.text() = 0

shuffle([0, 1, 2]) [coefficient(A) + "x^2", coefficient(B) + "x", C] [coefficient(-A) + "x^2", coefficient(-B) + "x", -C] TERMS.join("+")

TERMS[N1] = NEGTERMS[N2] + NEGTERMS[N3]

Care sunt soluțiile pentru x?

În primul rând trebuie să aducem ecuația la forma ax^2 + bx + c = 0:

\qquad \begin{eqnarray} TERMS[N1] + TERMS[N2] &=& NEGTERMS[N3] \\ TERMS[N1] + TERMS[N2] + TERMS[N3] &=& 0 \\ F.text() &=& 0 \end{eqnarray}

randRangeExclude(-10, 10, [0, A]) B C A1 - A shuffle([0, 1, 2]) [coefficient(A1) + "x^2", coefficient(B) + "x", C] [coefficient(A) + "x^2", coefficient(B) + "x", C]

TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = coefficient(A2) + "x^2"

Care sunt soluțiile pentru x?

În primul rând trebuie să aducem ecuația la forma ax^2 + bx + c = 0:

\qquad \begin{eqnarray} TERMS2[N1] + TERMS2[N2] + TERMS2[N3] &=& 0 \\ F.text() &=& 0 \end{eqnarray}

randRangeExclude(-10, 10, [0, B]) B1 - B shuffle([0, 1, 2]) [coefficient(A) + "x^2", coefficient(B1) + "x", C] [coefficient(A) + "x^2", coefficient(B) + "x", C]

TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = coefficient(B2) + "x"

Care sunt soluțiile pentru x?

randRangeExclude(-10, 10, [0, C]) C1 - C shuffle([0, 1, 2]) [coefficient(A) + "x^2", coefficient(B) + "x", C1] [coefficient(A) + "x^2", coefficient(B) + "x", C]

TERMS1[N1] + TERMS1[N2] + TERMS1[N3] = C2

Care sunt soluțiile pentru x?

Putem folosi formula pentru soluțiile ecuației de gradul II pentru a o rezolva:

\qquad x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Avem:
\qquad a = A, b = B, c = C

\qquad x = \dfrac{-negParens(B) \pm \sqrt{expr(["^", B, 2]) - 4 \cdot A \cdot C}}{2 \cdot A}

\qquad x = \dfrac{-B \pm \sqrt{RADICAND}}{2 * A}

\qquad x = \dfrac{-B \pm formattedSquareRootOf(RADICAND)}{2 * A}

\qquad quadraticRoots(A, B, C)